Уважаемые посетители! На сайте проводятся технические работы. Некоторые страницы могут быть недоступны.

Подразделы:

Углекислота, испарители и нагреватели

Скачать статью (368кб)


Углекислый газ при нормальных ус ловиях является бесцветным газом, не имеющим запаха, со слегка кисловатым вкусом. Углекислый газ (СО2) имеет много названий - диоксид углерода, двуокись углерода, угольный ангидрид, но под всеми этими названиями скрывается, как остро необходимый компонент в жизни человека и в промышленности, так и опасный газ, вызывающий удушье. Переизбыток углекислого газа в крови вызывает гиперкапнию (нарушение дыхания, характеризующееся увеличением рСО2 — парциального напряжения углекислого газа в крови), но недостаток углекислого газа тоже опасен и может вызвать гипокапнию (состояние, вызванное недостаточностью уровня СО2 в крови, отклонение от которого приводит к нарушению биохимического баланса в тканях. Проявляется гипокапния в лучшем случае в виде головокружения, а в худшем — заканчивается потерей сознания).

При концентрациях более 5% (92 г/м3)углекислый газ оказывает вредное влияние на здоровье человека. Он тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м3 (0,5%).

Рост концентрации углекислого газа в атмосфере за последние 59 лет имеет для климата угрожающие последствия. Из графика изменения концентрации углекислого в атмосфере видно, что на протяжении жизни одного поколения, за 59 лет, рост концентрации углекислоты составил около 100 ppm. Содержание СО2 растет все более высокими темпами. На сегодняшний день его значение составляет более 407 ppm.

Изменение концентрации углекислого газа в атмосфере в период с 1958 по апрель 2017 года

Рисунок 1. Изменение концентрации углекислого газа в атмосфере в период с 1958 по апрель 2017 года

По словам генерального секретаря Всемирной Метеорологической организации Мишеля Жарро, повышение концентрации парниковых газов в атмосфере является прямым следствием человеческой деятельности – сжиганием ископаемого топлива и вырубки лесов. В итоге нарушается атмосферный баланс, происходит таяние ледников и ледовых щитов, уровень мирового океана поднимается, а к концу двадцать первого века средняя температура может вырасти на 4,6 градуса. Ученые уже давно называют так называемый парниковый эффект, открытый Жозефом Фурье еще в 1824 году, основной из причин глобального потепления. В атмосфере в результате деятельности человека ежегодно дополнительно накапливается 3,3 млрд. тонн углерода в виде углекислого газа.

Из диаграммы фазового равновесия углекислого газа (рисунок 2) видно, что в тройной точке при температуре минус 56,6 °С и давлении 5,1 атм. углекислый газ может одновременно находиться в газообразном, жидком и твердом со стоянии. При более высоких значениях температуры и давления углекислый газ может находиться или в твердом, или в жидком, или в газообразном состоянии. При температуре и давлении ниже этих показателей углекислый газ непосредственно, минуя жидкую фазу, переходит в газообразное состояние. При температуре, превышающей критическую температуру (плюс 31 °С), углекислый газ не может существовать в жидком виде, при каком бы давлении он не находился.

Диаграмма фазового равновесия углекислого газа

Рисунок 2. Диаграмма фазового равновесия углекислого газа

Получить сжиженный углекислый газ впервые удалось английскому физику-экспериментатору и химику Майклу Фарадею в 1823 году. При нормальных условиях (20 °С и 101,3 кПа) при испарении 1 кг жидкой углекислоты образуется 506 л углекислого газа.

Применений у углекислого газа множество. В пищевой промышленности углекислый газ используется при производстве и розливе напитков как консервант, для экстракции полезных веществ из растительного и лекарственного сырья, а также в качестве разрыхлителя. Твёрдая углекислота (сухой лёд) широко используется в пищевой промышленности в качестве хладагента, а в технике для бластинга. Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей. Углекислый газ используется в качестве защитной среды при сварке как в чистом виде, так и в смеси с аргоном. Углекислота в баллончиках применяется в пневматическом оружии (в газобаллонной пневматике) и в качестве источника энергии для двигателей в авиамоделировании. Углекислота используется в качестве хладагента (R-744) и рабочего тела в теплоэнергетических установках (в холодильниках, кондиционерах, тепловых насосах, морозильниках, солнечных электрогенераторах и т.д.).

Источников получения углекислого газа так же много, как и сфер его применения. Природными источниками углекислого газа являются: дыхание растений и животных, вулканическая деятельность (в состав вулканических газов входит углекислый газ), гниение и горение органики. Искусственными источниками углекислого газа являются: автомобильный транспорт, промышленные выбросы, связанные с процессами сгорания.

В промышленности углекислый газ получают из печных (дымовых) газов, а также при разложении природных карбонатов (известняк, доломит). Смесь полученных газов, промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната, чаще применяется водный раствор моноэтаноламина, который при определённых условиях способен абсорбировать СО2, содержащийся в дымовых газах, а при нагреве отдавать его, таким образом, отделяется готовый продукт от других веществ.

В пищевых процессах побочным продуктом является углекислота, образующаяся при спиртовом брожении. В агрегатах синтеза аммиака углекислота тоже побочный продукт. В пищевой промышленности применяют углекислоту различного происхождения, а также произведённую из дымовых газов, полученных в результате специального сжигания природного газа и других видов топлива. После предварительной очистки, сжатия и охлаждения, углекислый газ ожижают и закачивают в изотермические емкости или в баллоны. В изотермических емкостях углекислота хранится при температуре от минус 30 до минус 20 °С.

При отборе углекислого газа из баллонов и газификаторов с понижением давления с помощью регулятора необходимо учитывать адиабатическое охлаждение углекислоты. При высокой скорости потока углекислого газа через регулятор давления из-за недостаточного подвода теплоты из атмосферы углекислота начинает охлаждаться, лед «забивает» механизм регулятора давления. Отбор углекислоты прекращается. Для устранения этого эффекта необходимо принудительно подогревать углекислый газ перед входом в регулятор давления.

Для газификации жидкой углекислоты в промышленности используют специальное оборудование – испарители. Можно выделить следующие типы испарителей:

  • Атмосферный;
  • Испаритель с жидким теплоносителем;
  • Паровой;
  • Электропаровой;
  • Электрический с алюминиевым теплоносителем (сухого типа).

В производственной программе компании «Мониторинг Вентиль и Фитинг» (MV&F) производство атмосферных, паровых, электрических испарителей и нагревателей является одним из основных направлений деятельности. Применение атмосферных испарителей является наиболее экономичным решением, так как для газификации сжиженных газов не требуется затрачивать электрическую энергию, а в качестве источника тепла выступает энергия окружающей среды.Газификация сжиженных газов в атмосферных испарителях осуществляется за счет теплопритоков из окружающей среды благодаря развитой поверхности теплообмена труб из алюминиевого сплава с наружным и внутренним оребрением.

Испаритель, рассчитанный на большую производительность, будет иметь внушительные габаритные размеры. Эффективность атмосферного испарителя в холодное время года (осень-зима) снижается, так как в холодное время года приток тепла от окружающей среды меньше, чем в теплое время года и эффективность регенерации (удаление влаги, замерзшей на поверхности испарителя) резко снижается. Для газификации углекислоты эта особенность наиболее критична.

Попробуем разобраться в этой проблеме. Применительно к газификации жидкого азота (температура кипения – минус 196,15 °С), жидкого кислорода (температура кипения – минус 182,9 °С), жидкого аргона (температура кипения – минус 185,9 °С) мы видим значительную разницу между температурой окружающей среды и температурой кипения криогенной жидкости. Тепловой напор в летний период может достигать 230 °С, а в зимний – 140 °С (в зависимости от географического местоположения испарителя). Это значит, что теплового потока из окружающего воздуха вполне будет достаточно для газификации криогенной жидкости. При необходимости после атмосферного испарителя можно поставить электрический подогреватель газа, чтобы плавно и точно нагреть газ до требуемой температуры. В случае с углекислотой получается совсем другая картина. Углекислота может находиться в жидком состоянии при температуре окружающего воздуха, и для процесса газификации тепло из атмосферы взять не получится. В жаркую летнюю погоду атмосферные испарители будут справляться со своей работой. Для работы в холодное время года мы рекомендуем использовать электрические или паровые испарители в дополнение к атмосферному, или в качестве альтернативы атмосферному испарителю.

На рисунке 3 представлен электропаровой испаритель жидкой углекислоты с производительностью 1000 нм3/час производства MV&F.

Электропаровой испаритель углекислоты

Рисунок 3. Электропаровой испаритель углекислоты

Конструктивно данный электропаровой испаритель состоит из двух независимых змеевиков. Через один змеевик поступает водяной пар с температурой 160 °С для нагрева второго змеевика с жидкой углекислотой через алюминиевый теплоноситель. Испаритель оснащен так же резервными ТЭНами, всей необходимой защитной и запорной арматурой, а так же на выходе из парового змеевика предусмотрен конденсатоотводчик для отвода конденсата из системы подачи пара. Для регулирования подачи пара предусмотрен кран с электроприводом. Контроль температуры алюминиевого теплоносителя, температуры ТЭН, а так же температуры углекислого газа на выходе из испарителя осуществляется с помощью датчиков температуры, входящих в комплект поставки электропарового испарителя.

В электрических испарителях для преобразования жидкой фазы в газообразную используются специальные залитые алюминиевым сплавом ТЭНы и змеевики. Тепловая энергия от ТЭН передается через алюминиевый теплоноситель змеевику с жидкой средой. Испарители такого типа также называют сухими, так как в процессе работы для теплопередачи не используются жидкости-теплоносители, а значит вероятность утечки, замерзания и вскипания этой жидкости и необходимость контроля уровня и доливки отсутствует. Преимуществом электрических испарителей является хорошая управляемость, точность регулирования температуры и быстрый выход на рабочий режим.

Электрические испарители обладают более компактными габаритными размерами по сравнению с атмосферными при одной и той же производительности. Они удобны в эксплуатации и обслуживании, так у них нет оребренных труб, которые необходимо очищать от льда.

Для клиентов, которым требуется газифицировать или нагревать два и более потока криогенной жидкости, компанией MV&F был разработан компактный двухмодульный электрический испаритель на единой раме из нержавеющей стали. Данный модульный испаритель представлен на рисунке 4. Данное решение требует меньше времени на монтаж, экономит кабельную продукцию и транспортировать данный испаритель проще. При производственной необходимости заказчик может заказать испаритель с требуемым количеством модулей на различные криогенные жидкости. Данные модульные системы хороши тем, что при увеличении расходных характеристик, которые не были запланированы в первоначальном техническом задании, есть возможность установить параллельно один или несколько модулей в общий коллектор, тем самым увеличив пропускную способность электрического испарителя. Если в Вашем производственном процессе требуется нагреть газ или жидкость до требуемой температуры, то специалисты компании MV&F окажут Вам консультацию в подборе электрического теплообменного оборудования. Мы делаем испарители и нагреватели для продуктов разделения воздуха, природного газа, углекислого газа и других газов, и жидкостей как в общепромышленном, так и во взрывозащищенном исполнении в соответствии с ТР ТС 010, 012 и 032.

Двухмодульный электрический испаритель углекислоты и аргона

Рисунок 4. Двухмодульный электрический испаритель углекислоты и аргона

При давлении рабочей среды до 40 бар целесообразно использовать проточные нагреватели с непосредственном контактом среды и ТЭН. Проточные нагреватели имеют меньшую инерционность и позволяют более точно поддерживать температуру газа на выходе из нагревателя на уровне ±2 °С. Примеры проточных нагревателей производства MV&F во взрывозащищённом и общепромышленном исполнении представлены на рисунке 5.

Проточный электрический нагреватель: а – взрывозащищенного исполнения, б – общепромышленного исполнения

Рисунок 5. Проточный электрический нагреватель: а – взрывозащищенного исполнения, б – общепромышленного исполнения

Для предприятий, которые занимаются высокотемпературными испытаниями производимых объектов требуется высокая температура испытательного газа. Именно для этих целей компанией MV&F разработан высокотемпературный нагреватель, с помощью которого можно нагреть испытательный газ от комнатной температуры до 600 °С и выше. Для исполнения нагревателей, которые работают при высоких температурах используется высококачественные жаростойкие сплавы. Один из высокотемпературных нагревателей, произведенных компанией MV&F для испытаний высокотемпературных уплотнений при температуре 500 °С, представлен на рисунке 6.

Высокотемпературный нагреватель воздуха

Рисунок 6. Высокотемпературный нагреватель воздуха

В задачах, где давление нагреваемой среды высокое, предпочтительно использовать нагреватели с промежуточным теплоносителем. Давление рабочей среды в данных нагревателях ограничено только параметрами самого змеевика. Компания MV&F производит данные нагреватели на среднее и высокое давление. Положительной особенностью данных нагревателей является то, что промежуточный алюминиевый теплоноситель одновременно является аккумулятором тепла и позволяет сглаживать температуру газа на выходе при переменном расходе.

Для экономии места на объекте и удобстве управления и мониторинга температуры газа у компании MV&F есть компактное решение, которое объединяет в себе электрический нагреватель (испаритель) и шкаф питания и управления на единой раме (см. рисунок 7).

Электрический нагреватель высокого давления со шкафом питания и управления на единой раме

Рисунок 7. Электрический нагреватель высокого давления со шкафом питания и управления на единой раме

По желанию заказчика электрические испарители и нагреватели могут комплектоваться шкафами или щитами питания и управления. Шкаф и щит обеспечивают плавное (тиристорное) управление мощностью нагревателя, а с помощью встроенного ПИД регулятора оператор может выставить требуемую температура газа, которая будет поддерживаться на всем протяжении технологического процесса. Пример шкафа и пример щита представлены на рисунке 8.

а – шкаф питания и управления, б – щит питания и управления для электрических нагревателей и испарителей

Рисунок 8. а – шкаф питания и управления, б – щит питания и управления для электрических нагревателей и испарителей

В промышленной теплотехнике есть множество интересных и сложных задач, поиском решений которых каждый день занимаются специалисты компании «Мониторинг Вентиль и Фитинг» (MV&F). Если Вам требуется эффективное и технологичное решение Вашей задачи, если нужна техническая помощь, то наши специалисты всегда готовы ее оказать. Мы помогаем как конечным потребителям, так и проектным и монтажным организациям.